Minocycline protects against delayed cerebral ischemia after subarachnoid hemorrhage via matrix metalloproteinase‐9 inhibition
نویسندگان
چکیده
Objective Delayed cerebral ischemia (DCI) is an independent risk factor for poor outcome after aneurysmal subarachnoid hemorrhage (SAH) and is multifactorial in etiology. While prior studies have suggested a role for matrix metalloproteinase-9 (MMP-9) in early brain injury after SAH, its contribution to the pathophysiology of DCI is unclear. Methods In the first experiment, wild-type (WT) and MMP-9-/- mice were subjected to sham or endovascular perforation SAH surgery. In separate experiments, WT and MMP-9-/-mice were administered vehicle or minocycline either pre- or post-SAH. All mice underwent assessment of multiple components of DCI including vasospasm, neurobehavioral function, and microvessel thrombosis. In another experiment, rabbits were subjected to sham or cisterna magna injection SAH surgery, and administered vehicle or minocycline followed by vasospasm assessment. Results MMP-9 expression and activity was increased after SAH. Genetic (MMP-9-/- mice) and pharmacological (pre-SAH minocycline administration) inhibition of MMP-9 resulted in decreased vasospasm and neurobehavioral deficits. A therapeutically feasible strategy of post-SAH administration of minocycline resulted in attenuation of multiple components of DCI. Minocycline administration to MMP-9-/- mice did not yield additional protection. Consistent with experiments in mice, both pre- and post-SAH administration of minocycline attenuated SAH-induced vasospasm in rabbits. Interpretation MMP-9 is a key player in the pathogenesis of DCI. The consistent attenuation of multiple components of DCI with both pre- and post-SAH administration of minocycline across different species and experimental models of SAH, combined with the excellent safety profile of minocycline in humans suggest that a clinical trial in SAH patients is warranted.
منابع مشابه
Extension of the thrombolytic time window with minocycline in experimental stroke.
BACKGROUND AND PURPOSE Thrombolysis with tPA is the only FDA-approved therapy for acute ischemic stroke. But its widespread application remains limited by narrow treatment time windows and the related risks of cerebral hemorrhage. In this study, we ask whether minocycline can prevent tPA-associated cerebral hemorrhage and extend the reperfusion window in an experimental stroke model in rats. ...
متن کاملMeasuring serum matrix metalloproteinase-9 levels in peripheral blood after subarachnoid hemorrhage to predict cerebral vasospasm
PURPOSE We aimed to investigate serum levels of matrix metalloproteinase-9 in both subarachnoid hemorrhage and control groups for prediction of cerebral vasospasm in this study. METHODS Venous serum matrix metalloproteinase-9 levels were prospectively measured four times (days 1, 3, 7, and 14) for 34 consecutive patients with subarachnoidal hemorrhage (n = 27) and for elective aneurysm clippi...
متن کاملMatrix metalloproteinase-9 inhibition attenuates vascular endothelial growth factor-induced intracerebral hemorrhage.
BACKGROUND AND PURPOSE Human brain arteriovenous malformation tissue displays increased levels of vascular endothelial growth factor (VEGF) as well as matrix metalloproteinase (MMP)-9, a tissue protease associated with various intracerebral hemorrhage (ICH). We hypothesized that increased MMP-9 was associated with ICH induced by vascular endothelial growth factor hyperstimulation and that this ...
متن کاملEffects of minocycline plus tissue plasminogen activator combination therapy after focal embolic stroke in type 1 diabetic rats.
BACKGROUND AND PURPOSE Poststroke hyperglycemia is associated with resistance to tissue plasminogen activator (tPA) reperfusion, higher risk of intracerebral hemorrhage, and worse neurological outcomes. In this study, we asked whether minocycline combined with intravenous tPA may ameliorate inflammation and brain injury after focal embolic stroke in type 1 diabetic rats. METHODS Type 1 diabet...
متن کاملMinocycline and tissue-type plasminogen activator for stroke: assessment of interaction potential.
BACKGROUND AND PURPOSE New treatment strategies for acute ischemic stroke must be evaluated in the context of effective reperfusion. Minocycline is a neuroprotective agent that inhibits proteolytic enzymes and therefore could potentially both inactivate the clot lysis effect and decrease the damaging effects of tissue-type plasminogen activator (t-PA). This study aimed to determine the effect o...
متن کامل